Voronoi Diagrams of the Ulam Prime Spiral

The table below shows the primes that have Voronoi cells with area larger than any small prime. I conjecture that this sequence is an infinite sequence - that is, there's no 'largest' voronoi cell. If you aren't sure what all this means, check out the explanation on the main page on this topic.

p"Centre"#VerticesVertex ListAreaPerimeter
2(1,0)5
 ( 32 , 12 ) , ( 32 , - 32 ) , ( 16 , - 56 ) , ( - 14 , 0 ) , ( 0 , 12 )
 6124
 72 + 43 �5
3(1,1)5
 ( 0 , 12 ) , ( 32 , 12 ) , ( 2 , 1 ) , ( 12 , 52 ) , ( 0 , 73 )
 6524
 103 + 2 �2 + 16 �10
5(-1,1)6
 ( - 2 , 1 ) , ( - 1 , 0 ) , ( - 14 , 0 ) , ( 0 , 12 ) , ( 0 , 73 ) , ( - 12 , 52 )
 15748
 3112 + 52 �2 + 14 �5 + 16 �10
11(2,0)5
 ( 32 , 12 ) , ( 32 , - 32 ) , ( 3 , - 2 ) , ( 3 , 0 ) , ( 2 , 1 )
 72
 4 + 32 �2 + 12 �10
23(0,-2)4
 ( 16 , - 56 ) , ( - 32 , - 52 ) , ( - 1 , - 4 ) , ( 32 , - 32 )
 256
 256 �2 + 23 �5 + 12 �10
37(-3,3)5
 ( - 4 , 3 ) , ( - 4 , 4 ) , ( - 3 , 5 ) , ( - 32 , 72 ) , ( - 3 , 2 )
 174
 1 + 5 �2
47(1,-3)4
 ( - 1 , - 4 ) , ( 32 , - 32 ) , ( 3 , - 2 ) , ( 12 , - 92 )
 5
 5 �2 + �10
53(4,0)5
 ( 3 , 0 ) , ( 3 , - 2 ) , ( 5 , - 43 ) , ( 5 , 43 ) , ( 92 , 32 )
 316
 143 + 32 �2 + 56 �10
79(2,-4)4
 ( 12 , - 92 ) , ( 3 , - 2 ) , ( 154 , - 174 ) , ( 2 , - 6 )
 518
 234 �2 + 34 �10
83(5,-3)5
 ( 6 , - 5 ) , ( 6 , - 53 ) , ( 5 , - 43 ) , ( 3 , - 2 ) , ( 154 , - 174 )
 9512
 103 + 52 �10
137(2,6)5
 ( 1 , 5 ) , ( 1 , 8 ) , ( 4 , 7 ) , ( 143 , 193 ) , ( 4 , 5 )
 496
 6 + 23 �2 + 23 �5 + �10
233(8,0)6
 ( 7 , - 43 ) , ( 7 , 43 ) , ( 334 , 74 ) , ( 10 , 0 ) , ( 10 , - 1 ) , ( 9 , - 2 )
 19924
 113 + 114 �2 + 1312 �10
311(5,9)7
 ( 4 , 11 ) , ( 4 , 7 ) , ( 143 , 193 ) , ( 6 , 7 ) , ( 203 , 9 ) , ( 132 , 192 ) , ( 5 , 11 )
 374
 5 + 136 �2 + 23 �5 + 56 �10
443(11,-9)6
 ( 10 , - 11 ) , ( 9 , - 8 ) , ( 10 , - 7 ) , ( 323 , - 203 ) , ( 514 , - 354 ) , ( 12 , - 11 )
 25924
 2 + 3712 �2 + 13 �5 + 74 �10
673(-9,13)5
 ( - 11 , 14 ) , ( - 414 , 474 ) , ( - 8 , 11 ) , ( - 477 , 1047 ) , ( - 7 , 463 )
 31128
 17342 �10 + 221 �34
881(5,15)5
 ( 4 , 14 ) , ( 4 , 17 ) , ( 203 , 553 ) , ( 7 , 18 ) , ( 7 , 14 )
 676
 10 + 13 �2 + 43 �5
919(-15,-3)7
 ( - 16 , - 5 ) , ( - 1217 , - 87 ) , ( - 18811 , - 911 ) , ( - 312 , - 12 ) , ( - 534 , - 114 ) , ( - 574 , - 234 ) , ( - 443 , - 173 )
 236411848
 94 �2 + 23 �5 + 167 �10 + 53132 �26 + 577 �34
1753(-9,21)8
 ( - 354 , 774 ) , ( - 11 , 20 ) , ( - 353 , 643 ) , ( - 192 , 472 ) , ( - 9 , 1185 ) , ( - 172 , 472 ) , ( - 7 , 22 ) , ( - 203 , 643 )
 1591120
 234 �2 + �5 + 34 �10 + 15 �26
1993(-10,-22)6
 ( - 8 , - 21 ) , ( - 192 , - 512 ) , ( - 897 , - 1717 ) , ( - 13 , - 24 ) , ( - 13 , - 22 ) , ( - 11 , - 20 )
 51928
 2 + 2 �2 + 257 �10 + 17 �13
2719(-26,12)7
 ( - 25 , 10 ) , ( - 472 , 292 ) , ( - 1978 , 1198 ) , ( - 823 , 433 ) , ( - 863 , 353 ) , ( - 1736 , 656 ) , ( - 532 , 172 )
 98348
 236 �2 + 43 �5 + 158 �10 + 1724 �26
3911(-27,-31)7
 ( - 29 , - 30 ) , ( - 29 , - 34 ) , ( - 28 , - 1043 ) , ( - 552 , - 692 ) , ( - 24 , - 31 ) , ( - 24 , - 29 ) , ( - 28 , - 29 )
 834
 10 + 92 �2 + 16 �10 + 13 �13
6427(-40,14)6
 ( - 39 , 383 ) , ( - 39 , 17 ) , ( - 41 , 17 ) , ( - 2596 , 29318 ) , ( - 101723 , 31823 ) , ( - 46911 , 12611 )
 2006039108
 193 + 383198 �10 + 200253 �13 + 145414 �58
7621(44,8)8
 ( 42 , 7 ) , ( 1223 , 293 ) , ( 1273 , 343 ) , ( 872 , 232 ) , ( 932 , 172 ) , ( 2345 , 7 ) , ( 3698 , 478 ) , ( 1774 , 194 )
 2941120
 314 �2 + 43 �5 + 310 �26 + 35 �34
8867(-47,17)6
 ( - 2245 , 19 ) , ( - 50 , 19 ) , ( - 992 , 332 ) , ( - 932 , 272 ) , ( - 101723 , 31823 ) , ( - 2596 , 29318 )
 276681035
 265 + 21346 �2 + 12 �26 + 4990 �34 + 145414 �58