Contents
Title Page......i
Abstract......iii
Contents......iv
Acknowledgements......vii
CHAPTER 1: How To Read This Thesis......1
1.1: Aim of the Work......1
1.2: Thesis Outline......3
1.3: Knowledge Required and Other Warnings......5
CHAPTER 2: Geometric Polytopes......6
2.1: Introductory Concepts......6
2.2: Definitions of a Polytope......8
2.3: Properties of Polytopes......9
2.3.1: Faces......9
2.3.2: Combinatorial Equivalence......11
2.3.3: Duals......13
2.3.4: Vertex Figures......14
2.4: Regular Polytopes......15
2.4.1: The Definition......15
2.4.2: Schlafli Symbols......17
2.5: The Classification of Regular Polytopes......18
2.5.1: The 1- and 2-polytopes......18
2.5.2: The 3-polytopes......18
2.5.3: The 4-polytopes......20
2.5.4: From Then On......21
CHAPTER 3: Combinatorial Polytopes......23
3.1: Incidence Complexes......23
3.2: Euler Polytopes......30
3.3: Properties of Euler Polytopes......32
3.3.1: Isomorphism......32
3.3.2: Duals......37
3.3.3: (i,j)-Connectivity......39
3.3.4: Subpolytopes......42
3.3.5: Decomposable Polytopes......44
3.4: Regular Incidence Polytopes......50
3.4.1: Automorphism Groups......50
3.4.2: Regular Incidence Polytopes......52
3.4.3: Schlafli Symbols......55
3.4.4: Number Crunching......59
3.5: The Geometric Link......60
CHAPTER 4: Some Examples......64
4.1: Combinatorial Simplices......65
4.2: Combinatorial Cubes......69
4.3: Halfcubes......76
4.4: The Crosses and Halfcrosses......85
4.5: The Lattices......86
4.6: Sporadic Examples......97
4.6.1: The 1-polytopes......97
4.6.2: The 2-polytopes......98
4.6.3: 3- and 4-polytopes......98
CHAPTER 5: Groups And Polytopes......100
5.1: Coxeter Groups......100
5.1.1: Introduction......100
5.1.2: Other Notes......105
5.1.3: Coxeter Groups and the Flag Action......108
5.2: Complexes Constructed from Groups......115
5.2.1: Universal Complexes......116
5.2.2: Quotient Polytopes......124
5.2.3: Groups Acting on Quotients......134
5.3: Applications of the Constructions......138
CHAPTER 6: Some Classifications......143
6.1: General Classes......143
6.1.1: The Simplices......143
6.1.2: Cubes and Halfcubes......149
6.1.3: Crosses and Halfcrosses......154
6.2: The Lattices and Related Polytopes......154
6.2.1: Preliminaries......154
6.2.2: The Coxeter Group......157
6.2.3: Sparse Subgroups......163
6.2.4: The Link With the Lattices......172
6.3: Particular Dimensions......178
6.3.1: The 1- and 2-polytopes......178
6.3.2: The 3-polytopes......178
6.3.3: The 4-polytopes......181
6.3.4: The 5-polytopes......189
6.3.5: From Then On......193
CHAPTER 7: Conclusion......195
7.1: Summary......195
7.2: What Follows......198
APPENDIX A: Information On Selected Coxeter Groups......200
APPENDIX B: Non-Lattices......205
B.1: The Example......206
B.2: The Non-Existence......207
APPENDIX C: CAYLEY Code......211
C.1: The Naive Algorithm......211
C.2: Refining the Search......213
C.3: An Infinite Search......215
Bibliography......217
Index......222
List of Tables
Table 2.5.1: The Regular Polyhedra......18
Table 2.5.2: Vertex Sets for the Regular Polyhedra......19
Table 2.5.3: The Regular Geometric 4-Polytopes......21
Table 2.5.4: The Regular Geometric d-Polytopes, d>=5 (i)......22
Table 2.5.5: The Regular Geometric d-Polytopes, d>=5 (ii)......22
Table 6.3.1: Overview of Combinatorially Regular 4-Polytopes......183
Table 6.3.2: Some 4-Polytopes from Section 6.1......183
Table 6.3.3: Combinatorially Regular 4-Polytopes with... ......184
Table 6.3.4: Combinatorially Regular 4-Polytopes with... ......185
Table 6.3.5: Some Combinatorially Regular Polytopes Corresp... ......187
Table 6.3.6: Some Restrictions on Sparse Subgroups A......189
Table 6.3.7: Analysing Euler's Condition for 5-Polytopes......192
Table 6.3.8: Further Analysis of Euler's Condition......192
Table 6.3.9: Combinatorially Regular Euler d-Polytopes for d>=5......194
Table 7.1.1: Overview of Combinatorially Regular Euler Polytopes......199
Table A.1: Finite Coxeter Groups Satisfying C1......200
Table A.2: Infinite Coxeter Groups Satisfying C1 and C2......201
Table A.3: Quotient Polytopes for d>=3......202
Table A.4: Quotient Polytopes for d=4......203
Table A.5: Quotient Polytopes for d=5......203
Table A.6: Quotient Polytopes for d>=6......204
Table A.7: Finite Universal Polytopes......204