|
Voronoi Diagrams of the Ulam Prime Spiral
The table below shows the primes that have Voronoi cells with area larger than any small prime. I conjecture that this
sequence is an infinite sequence - that is, there's no 'largest' voronoi cell.
If you aren't sure what all this means, check out the explanation on the main page on this topic.
p | "Centre" | #Vertices | Vertex List | Area | Perimeter |
2 | (1,0) | 5 | ( | 3 2
| , | 1 2
| ) | , | ( | 3 2
| , | - | 3 2
| ) | , | ( | 1 6
| , | - | 5 6
| ) | , | ( | - | 1 4
| , | 0 | ) | , | ( | 0 | , | 1 2
| ) |
| | |
3 | (1,1) | 5 | ( | 0 | , | 1 2
| ) | , | ( | 3 2
| , | 1 2
| ) | , | ( | 2 | , | 1 | ) | , | ( | 1 2
| , | 5 2
| ) | , | ( | 0 | , | 7 3
| ) |
| | |
5 | (-1,1) | 6 | ( | - | 2 | , | 1 | ) | , | ( | - | 1 | , | 0 | ) | , | ( | - | 1 4
| , | 0 | ) | , | ( | 0 | , | 1 2
| ) | , | ( | 0 | , | 7 3
| ) | , | ( | - | 1 2
| , | 5 2
| ) |
| | |
11 | (2,0) | 5 | ( | 3 2
| , | 1 2
| ) | , | ( | 3 2
| , | - | 3 2
| ) | , | ( | 3 | , | - | 2 | ) | , | ( | 3 | , | 0 | ) | , | ( | 2 | , | 1 | ) |
| | |
23 | (0,-2) | 4 | ( | 1 6
| , | - | 5 6
| ) | , | ( | - | 3 2
| , | - | 5 2
| ) | , | ( | - | 1 | , | - | 4 | ) | , | ( | 3 2
| , | - | 3 2
| ) |
| | |
37 | (-3,3) | 5 | ( | - | 4 | , | 3 | ) | , | ( | - | 4 | , | 4 | ) | , | ( | - | 3 | , | 5 | ) | , | ( | - | 3 2
| , | 7 2
| ) | , | ( | - | 3 | , | 2 | ) |
| | |
47 | (1,-3) | 4 | ( | - | 1 | , | - | 4 | ) | , | ( | 3 2
| , | - | 3 2
| ) | , | ( | 3 | , | - | 2 | ) | , | ( | 1 2
| , | - | 9 2
| ) |
| | |
53 | (4,0) | 5 | ( | 3 | , | 0 | ) | , | ( | 3 | , | - | 2 | ) | , | ( | 5 | , | - | 4 3
| ) | , | ( | 5 | , | 4 3
| ) | , | ( | 9 2
| , | 3 2
| ) |
| | |
79 | (2,-4) | 4 | ( | 1 2
| , | - | 9 2
| ) | , | ( | 3 | , | - | 2 | ) | , | ( | 15 4
| , | - | 17 4
| ) | , | ( | 2 | , | - | 6 | ) |
| | |
83 | (5,-3) | 5 | ( | 6 | , | - | 5 | ) | , | ( | 6 | , | - | 5 3
| ) | , | ( | 5 | , | - | 4 3
| ) | , | ( | 3 | , | - | 2 | ) | , | ( | 15 4
| , | - | 17 4
| ) |
| | |
137 | (2,6) | 5 | ( | 1 | , | 5 | ) | , | ( | 1 | , | 8 | ) | , | ( | 4 | , | 7 | ) | , | ( | 14 3
| , | 19 3
| ) | , | ( | 4 | , | 5 | ) |
| | |
233 | (8,0) | 6 | ( | 7 | , | - | 4 3
| ) | , | ( | 7 | , | 4 3
| ) | , | ( | 33 4
| , | 7 4
| ) | , | ( | 10 | , | 0 | ) | , | ( | 10 | , | - | 1 | ) | , | ( | 9 | , | - | 2 | ) |
| | |
311 | (5,9) | 7 | ( | 4 | , | 11 | ) | , | ( | 4 | , | 7 | ) | , | ( | 14 3
| , | 19 3
| ) | , | ( | 6 | , | 7 | ) | , | ( | 20 3
| , | 9 | ) | , | ( | 13 2
| , | 19 2
| ) | , | ( | 5 | , | 11 | ) |
| | |
443 | (11,-9) | 6 | ( | 10 | , | - | 11 | ) | , | ( | 9 | , | - | 8 | ) | , | ( | 10 | , | - | 7 | ) | , | ( | 32 3
| , | - | 20 3
| ) | , | ( | 51 4
| , | - | 35 4
| ) | , | ( | 12 | , | - | 11 | ) |
| | |
673 | (-9,13) | 5 | ( | - | 11 | , | 14 | ) | , | ( | - | 41 4
| , | 47 4
| ) | , | ( | - | 8 | , | 11 | ) | , | ( | - | 47 7
| , | 104 7
| ) | , | ( | - | 7 | , | 46 3
| ) |
| | |
881 | (5,15) | 5 | ( | 4 | , | 14 | ) | , | ( | 4 | , | 17 | ) | , | ( | 20 3
| , | 55 3
| ) | , | ( | 7 | , | 18 | ) | , | ( | 7 | , | 14 | ) |
| | |
919 | (-15,-3) | 7 | ( | - | 16 | , | - | 5 | ) | , | ( | - | 121 7
| , | - | 8 7
| ) | , | ( | - | 188 11
| , | - | 9 11
| ) | , | ( | - | 31 2
| , | - | 1 2
| ) | , | ( | - | 53 4
| , | - | 11 4
| ) | , | ( | - | 57 4
| , | - | 23 4
| ) | , | ( | - | 44 3
| , | - | 17 3
| ) |
| | | 9 4
| �2 | + | 2 3
| �5 | + | 16 7
| �10 | + | 53 132
| �26 | + | 5 77
| �34 |
|
1753 | (-9,21) | 8 | ( | - | 35 4
| , | 77 4
| ) | , | ( | - | 11 | , | 20 | ) | , | ( | - | 35 3
| , | 64 3
| ) | , | ( | - | 19 2
| , | 47 2
| ) | , | ( | - | 9 | , | 118 5
| ) | , | ( | - | 17 2
| , | 47 2
| ) | , | ( | - | 7 | , | 22 | ) | , | ( | - | 20 3
| , | 64 3
| ) |
| | |
1993 | (-10,-22) | 6 | ( | - | 8 | , | - | 21 | ) | , | ( | - | 19 2
| , | - | 51 2
| ) | , | ( | - | 89 7
| , | - | 171 7
| ) | , | ( | - | 13 | , | - | 24 | ) | , | ( | - | 13 | , | - | 22 | ) | , | ( | - | 11 | , | - | 20 | ) |
| | |
2719 | (-26,12) | 7 | ( | - | 25 | , | 10 | ) | , | ( | - | 47 2
| , | 29 2
| ) | , | ( | - | 197 8
| , | 119 8
| ) | , | ( | - | 82 3
| , | 43 3
| ) | , | ( | - | 86 3
| , | 35 3
| ) | , | ( | - | 173 6
| , | 65 6
| ) | , | ( | - | 53 2
| , | 17 2
| ) |
| | | 23 6
| �2 | + | 4 3
| �5 | + | 15 8
| �10 | + | 17 24
| �26 |
|
3911 | (-27,-31) | 7 | ( | - | 29 | , | - | 30 | ) | , | ( | - | 29 | , | - | 34 | ) | , | ( | - | 28 | , | - | 104 3
| ) | , | ( | - | 55 2
| , | - | 69 2
| ) | , | ( | - | 24 | , | - | 31 | ) | , | ( | - | 24 | , | - | 29 | ) | , | ( | - | 28 | , | - | 29 | ) |
| | |
6427 | (-40,14) | 6 | ( | - | 39 | , | 38 3
| ) | , | ( | - | 39 | , | 17 | ) | , | ( | - | 41 | , | 17 | ) | , | ( | - | 259 6
| , | 293 18
| ) | , | ( | - | 1017 23
| , | 318 23
| ) | , | ( | - | 469 11
| , | 126 11
| ) |
| | | 19 3
| + | 383 198
| �10 | + | 200 253
| �13 | + | 145 414
| �58 |
|
7621 | (44,8) | 8 | ( | 42 | , | 7 | ) | , | ( | 122 3
| , | 29 3
| ) | , | ( | 127 3
| , | 34 3
| ) | , | ( | 87 2
| , | 23 2
| ) | , | ( | 93 2
| , | 17 2
| ) | , | ( | 234 5
| , | 7 | ) | , | ( | 369 8
| , | 47 8
| ) | , | ( | 177 4
| , | 19 4
| ) |
| | |
8867 | (-47,17) | 6 | ( | - | 224 5
| , | 19 | ) | , | ( | - | 50 | , | 19 | ) | , | ( | - | 99 2
| , | 33 2
| ) | , | ( | - | 93 2
| , | 27 2
| ) | , | ( | - | 1017 23
| , | 318 23
| ) | , | ( | - | 259 6
| , | 293 18
| ) |
| | | 26 5
| + | 213 46
| �2 | + | 1 2
| �26 | + | 49 90
| �34 | + | 145 414
| �58 |
|
|