|
Voronoi Diagrams of the Ulam Prime Spiral
The table below shows the primes that have 'rounder' Voronoi cells than any smaller prime. I conjecture that this
sequence is an infinite sequence - that is, there's no 'roundest' voronoi cell.
If you aren't sure what all this means, check out the explanation on the main page on this topic.
p | "Centre" | #Vertices | Vertex List | Area | Perimeter | (P/2)2/A |
2 | (1,0) | 5 | ( | 3 2
| , | 1 2
| ) | , | ( | 3 2
| , | - | 3 2
| ) | , | ( | 1 6
| , | - | 5 6
| ) | , | ( | - | 1 4
| , | 0 | ) | , | ( | 0 | , | 1 2
| ) |
| | | 4.132018689726583 |
3 | (1,1) | 5 | ( | 0 | , | 1 2
| ) | , | ( | 3 2
| , | 1 2
| ) | , | ( | 2 | , | 1 | ) | , | ( | 1 2
| , | 5 2
| ) | , | ( | 0 | , | 7 3
| ) |
| | | 4.1298586647841296 |
5 | (-1,1) | 6 | ( | - | 2 | , | 1 | ) | , | ( | - | 1 | , | 0 | ) | , | ( | - | 1 4
| , | 0 | ) | , | ( | 0 | , | 1 2
| ) | , | ( | 0 | , | 7 3
| ) | , | ( | - | 1 2
| , | 5 2
| ) |
| | | 3.967721553536328 |
37 | (-3,3) | 5 | ( | - | 4 | , | 3 | ) | , | ( | - | 4 | , | 4 | ) | , | ( | - | 3 | , | 5 | ) | , | ( | - | 3 2
| , | 7 2
| ) | , | ( | - | 3 | , | 2 | ) |
| | | 3.831890330807703 |
61 | (0,4) | 7 | ( | 0 | , | 5 | ) | , | ( | - | 3 2
| , | 7 2
| ) | , | ( | - | 1 2
| , | 5 2
| ) | , | ( | 0 | , | 7 3
| ) | , | ( | 1 2
| , | 5 2
| ) | , | ( | 1 | , | 3 | ) | , | ( | 1 | , | 5 | ) |
| | | 3.7546790434997863 |
67 | (-4,2) | 8 | ( | - | 5 | , | 2 | ) | , | ( | - | 5 | , | 1 | ) | , | ( | - | 9 2
| , | 1 2
| ) | , | ( | - | 4 | , | 1 3
| ) | , | ( | - | 7 2
| , | 1 2
| ) | , | ( | - | 3 | , | 1 | ) | , | ( | - | 3 | , | 2 | ) | , | ( | - | 4 | , | 3 | ) |
| | | 3.4723249554225166 |
10243 | (51,-9) | 8 | ( | 52 | , | - | 9 | ) | , | ( | 101 2
| , | - | 21 2
| ) | , | ( | 340 7
| , | - | 69 7
| ) | , | ( | 339 7
| , | - | 64 7
| ) | , | ( | 49 | , | - | 8 | ) | , | ( | 50 | , | - | 7 | ) | , | ( | 51 | , | - | 7 | ) | , | ( | 52 | , | - | 8 | ) |
| | | 3.4642618196721773 |
10243 | (51,-9) | 8 | ( | 52 | , | - | 9 | ) | , | ( | 101 2
| , | - | 21 2
| ) | , | ( | 340 7
| , | - | 69 7
| ) | , | ( | 339 7
| , | - | 64 7
| ) | , | ( | 49 | , | - | 8 | ) | , | ( | 50 | , | - | 7 | ) | , | ( | 51 | , | - | 7 | ) | , | ( | 52 | , | - | 8 | ) |
| | | 3.4642618196721773 |
11087 | (53,9) | 10 | ( | 51 | , | 10 | ) | , | ( | 51 | , | 35 3
| ) | , | ( | 52 | , | 12 | ) | , | ( | 161 3
| , | 12 | ) | , | ( | 223 4
| , | 43 4
| ) | , | ( | 447 8
| , | 83 8
| ) | , | ( | 166 3
| , | 23 3
| ) | , | ( | 54 | , | 7 | ) | , | ( | 105 2
| , | 15 2
| ) | , | ( | 103 2
| , | 17 2
| ) |
| | | 10 3
| + | �2 | + | 2 3
| �5 | + | 35 24
| �10 | + | 13 24
| �26 | + | 5 12
| �34 |
| 3.4425149109627373 |
15199 | (62,8) | 9 | ( | 60 | , | 7 | ) | , | ( | 60 | , | 29 5
| ) | , | ( | 184 3
| , | 5 | ) | , | ( | 63 | , | 5 | ) | , | ( | 129 2
| , | 13 2
| ) | , | ( | 65 | , | 22 3
| ) | , | ( | 65 | , | 9 | ) | , | ( | 255 4
| , | 41 4
| ) | , | ( | 243 4
| , | 37 4
| ) |
| | | 3.4377179873404042 |
16763 | (65,57) | 3 | ( | 66 | , | 55 | ) | , | ( | 336 5
| , | 55 | ) | , | ( | 203 3
| , | 172 3
| ) |
| | | 1.3085199697006535 |
15199 | (62,8) | 9 | ( | 60 | , | 7 | ) | , | ( | 60 | , | 29 5
| ) | , | ( | 184 3
| , | 5 | ) | , | ( | 63 | , | 5 | ) | , | ( | 129 2
| , | 13 2
| ) | , | ( | 65 | , | 22 3
| ) | , | ( | 65 | , | 9 | ) | , | ( | 255 4
| , | 41 4
| ) | , | ( | 243 4
| , | 37 4
| ) |
| | | 3.4377179873404042 |
16529 | (-48,-64) | 5 | ( | - | 50 | , | - | 63 | ) | , | ( | - | 49 | , | - | 62 | ) | , | ( | - | 46 | , | - | 62 | ) | , | ( | - | 271 6
| , | - | 377 6
| ) | , | ( | - | 136 3
| , | - | 191 3
| ) |
| | | 2.097909477057046 |
15199 | (62,8) | 9 | ( | 60 | , | 7 | ) | , | ( | 60 | , | 29 5
| ) | , | ( | 184 3
| , | 5 | ) | , | ( | 63 | , | 5 | ) | , | ( | 129 2
| , | 13 2
| ) | , | ( | 65 | , | 22 3
| ) | , | ( | 65 | , | 9 | ) | , | ( | 255 4
| , | 41 4
| ) | , | ( | 243 4
| , | 37 4
| ) |
| | | 3.4377179873404042 |
17471 | (-66,20) | 9 | ( | - | 129 2
| , | 41 2
| ) | , | ( | - | 64 | , | 19 | ) | , | ( | - | 65 | , | 18 | ) | , | ( | - | 67 | , | 17 | ) | , | ( | - | 338 5
| , | 17 | ) | , | ( | - | 69 | , | 58 3
| ) | , | ( | - | 69 | , | 21 | ) | , | ( | - | 67 | , | 22 | ) | , | ( | - | 131 2
| , | 43 2
| ) |
| | | 3.436491442936181 |
|