Voronoi Diagrams of the Ulam Prime Spiral
The table below shows the primes less than 10000 whose Voronoi cells have a perimeter which is
a square root of a rational.
If you aren't sure what all this means, check out the explanation on the main page on this topic.
p "Centre" #Vertices Vertex List Area Perimeter
71 (-4,-2) 4 ( - 5 , - 2 ) , ( - 4 , - 3 ) , ( - 3 , - 2 ) , ( - 4 , - 1 )
73 (-4,-4) 4 ( - 4 , - 3 ) , ( - 11
2 , - 9
2 ) , ( - 9
2 , - 11
2 ) , ( - 3 , - 4 )
251 (-2,8) 4 ( - 2 , 7 ) , ( - 4 , 9 ) , ( - 3 , 10 ) , ( - 1 , 8 )
331 (-9,3) 4 ( - 9 , 2 ) , ( - 21
2 , 7
2 ) , ( - 9 , 5 ) , ( - 15
2 , 7
2 )
353 (1,-9) 4 ( 0 , - 9 ) , ( 1 , - 10 ) , ( 2 , - 9 ) , ( 1 , - 8 )
467 (7,11) 4 ( 8 , 11 ) , ( 13
2 , 19
2 ) , ( 5 , 11 ) , ( 13
2 , 25
2 )
479 (-5,11) 4 ( - 6 , 11 ) , ( - 4 , 9 ) , ( - 3 , 10 ) , ( - 5 , 12 )
701 (-13,-11) 4 ( - 14 , - 11 ) , ( - 13 , - 12 ) , ( - 12 , - 11 ) , ( - 13 , - 10 )
709 (-7,-13) 4 ( - 6 , - 13 ) , ( - 15
2 , - 29
2 ) , ( - 9 , - 13 ) , ( - 15
2 , - 23
2 )
751 (14,8) 4 ( 25
2 , 15
2 ) , ( 15 , 10 ) , ( 16 , 9 ) , ( 27
2 , 13
2 )
761 (10,14) 4 ( 17
2 , 27
2 ) , ( 21
2 , 31
2 ) , ( 23
2 , 29
2 ) , ( 19
2 , 25
2 )
941 (-5,-15) 4 ( - 5 , - 14 ) , ( - 13
2 , - 31
2 ) , ( - 11
2 , - 33
2 ) , ( - 4 , - 15 )
1151 (-11,17) 4 ( - 12 , 17 ) , ( - 11 , 16 ) , ( - 10 , 17 ) , ( - 11 , 18 )
1451 (-19,13) 4 ( - 20 , 13 ) , ( - 19 , 12 ) , ( - 18 , 13 ) , ( - 19 , 14 )
1759 (-15,21) 4 ( - 16 , 21 ) , ( - 29
2 , 39
2 ) , ( - 25
2 , 43
2 ) , ( - 14 , 23 )
1777 (-21,9) 4 ( - 22 , 9 ) , ( - 21 , 8 ) , ( - 39
2 , 19
2 ) , ( - 41
2 , 21
2 )
1801 (-21,-15) 4 ( - 23 , - 16 ) , ( - 20 , - 13 ) , ( - 19 , - 14 ) , ( - 22 , - 17 )
1811 (-17,-21) 4 ( - 31
2 , - 41
2 ) , ( - 18 , - 23 ) , ( - 39
2 , - 43
2 ) , ( - 17 , - 19 )
1949 (-22,10) 4 ( - 23 , 10 ) , ( - 22 , 9 ) , ( - 41
2 , 21
2 ) , ( - 43
2 , 23
2 )
2393 (16,-24) 4 ( 16 , - 25 ) , ( 29
2 , - 47
2 ) , ( 31
2 , - 45
2 ) , ( 17 , - 24 )
2617 (26,-10) 4 ( 49
2 , - 21
2 ) , ( 27 , - 8 ) , ( 57
2 , - 19
2 ) , ( 26 , - 12 )
2819 (27,-17) 4 ( 51
2 , - 33
2 ) , ( 55
2 , - 37
2 ) , ( 57
2 , - 35
2 ) , ( 53
2 , - 31
2 )
3323 (13,29) 4 ( 13 , 30 ) , ( 23
2 , 57
2 ) , ( 27
2 , 53
2 ) , ( 15 , 28 )
3347 (-11,29) 4 ( - 12 , 29 ) , ( - 11 , 28 ) , ( - 10 , 29 ) , ( - 11 , 30 )
3607 (-30,24) 4 ( - 31 , 24 ) , ( - 30 , 23 ) , ( - 28 , 25 ) , ( - 29 , 26 )
3643 (-30,-12) 4 ( - 30 , - 13 ) , ( - 63
2 , - 23
2 ) , ( - 59
2 , - 19
2 ) , ( - 28 , - 11 )
3671 (-20,-30) 4 ( - 20 , - 31 ) , ( - 23 , - 28 ) , ( - 22 , - 27 ) , ( - 19 , - 30 )
3701 (10,-30) 4 ( 9 , - 30 ) , ( 12 , - 33 ) , ( 13 , - 32 ) , ( 10 , - 29 )
3739 (31,-13) 4 ( 31 , - 12 ) , ( 29 , - 14 ) , ( 61
2 , - 31
2 ) , ( 65
2 , - 27
2 )
4073 (-8,32) 4 ( - 8 , 31 ) , ( - 10 , 33 ) , ( - 17
2 , 69
2 ) , ( - 13
2 , 65
2 )
4283 (33,25) 4 ( 33 , 26 ) , ( 31 , 24 ) , ( 32 , 23 ) , ( 34 , 25 )
4463 (7,-33) 4 ( 11
2 , - 65
2 ) , ( 8 , - 35 ) , ( 9 , - 34 ) , ( 13
2 , - 63
2 )
4691 (-34,-32) 4 ( - 35 , - 32 ) , ( - 34 , - 33 ) , ( - 33 , - 32 ) , ( - 34 , - 31 )
5227 (-36,-6) 4 ( - 37 , - 6 ) , ( - 36 , - 7 ) , ( - 69
2 , - 11
2 ) , ( - 71
2 , - 9
2 )
5297 (4,-36) 4 ( 3 , - 36 ) , ( 9
2 , - 75
2 ) , ( 11
2 , - 73
2 ) , ( 4 , - 35 )
6367 (-6,40) 4 ( - 7 , 40 ) , ( - 11
2 , 77
2 ) , ( - 9
2 , 79
2 ) , ( - 6 , 41 )
6653 (31,41) 4 ( 32 , 41 ) , ( 30 , 39 ) , ( 28 , 41 ) , ( 30 , 43 )
6659 (25,41) 4 ( 24 , 41 ) , ( 26 , 39 ) , ( 28 , 41 ) , ( 26 , 43 )
6829 (-19,-41) 4 ( - 20 , - 42 ) , ( - 20 , - 39 ) , ( - 17 , - 39 ) , ( - 17 , - 42 )
6911 (42,-20) 4 ( 42 , - 21 ) , ( 81
2 , - 39
2 ) , ( 85
2 , - 35
2 ) , ( 44 , - 19 )
7297 (43,29) 4 ( 42 , 29 ) , ( 87
2 , 55
2 ) , ( 89
2 , 57
2 ) , ( 43 , 30 )
7873 (-4,-44) 4 ( - 4 , - 45 ) , ( - 11
2 , - 87
2 ) , ( - 9
2 , - 85
2 ) , ( - 3 , - 44 )
8539 (-46,-28) 4 ( - 47 , - 27 ) , ( - 47 , - 30 ) , ( - 45 , - 30 ) , ( - 45 , - 27 )
8581 (-22,-46) 4 ( - 24 , - 46 ) , ( - 22 , - 48 ) , ( - 39
2 , - 91
2 ) , ( - 43
2 , - 87
2 )
8747 (43,47) 4 ( 42 , 47 ) , ( 87
2 , 91
2 ) , ( 45 , 47 ) , ( 87
2 , 97
2 )
9281 (-48,-16) 4 ( - 49 , - 17 ) , ( - 49 , - 14 ) , ( - 47 , - 14 ) , ( - 47 , - 17 )
9739 (-13,-49) 4 ( - 12 , - 49 ) , ( - 14 , - 51 ) , ( - 31
2 , - 99
2 ) , ( - 27
2 , - 95
2 )
9871 (50,20) 4 ( 50 , 21 ) , ( 97
2 , 39
2 ) , ( 99
2 , 37
2 ) , ( 51 , 20 )
9883 (50,32) 4 ( 97
2 , 63
2 ) , ( 51 , 34 ) , ( 105
2 , 65
2 ) , ( 50 , 30 )
9941 (10,50) 4 ( 21
2 , 97
2 ) , ( 8 , 51 ) , ( 9 , 52 ) , ( 23
2 , 99
2 )